The Role of Metformin in the Treatment of Type 2 Diabetes and Obesity

Mira H. Vuković

Education Center, General Hospital Valjevo, Valjevo, Serbia

SUMMARY

Topic: Mutual association and connection study between the obesity, visceral obesity, insulin desensitization (with the consequnetial hyperinsulinemia), type 2 diabetes, dyslipoproteinemia and anthropometric characteristics of the patients with the metabolic syndrome are the subject of many epidemiological studies. However, it is noticed that there are certain disagreements and contradictions in defining the anthropometric and metabolic risk factors for the occurrence of the cardiovascular, cerebrovascular and other vascular diseases, especially in population of the obese patients with type 2 diabetes.

Topic position in medical public: Theoretically, metformin achieves a good glicoregulation precisely in the visceral obese patients. This is explained by a higher glucometabolic activity of the visceral adipose tissue in regard to the subcutaneous tissue.

Further action: More efficient reduction of the visceral adipose tissue in patients with achieved better glicoregulation, under the affection of the metformin is a result of its complex effect mechanism. Metformin plays a significant role in the reduction of the cardiovascular risk that comes from a higher visceral obesity, parallel to the achievement of the good glicoregulation in obese, type 2 diabetes patients.

Keywords: metformin, diabetes mellitus, type 2, obesity, adipose tissue

TOPIC

For the obesity development, as well as for the development of the mentioned metabolic desease, answering how or in which way does it come to the increasement of the body adipose tissue has a great clinical significance. There are two ways of increasing body adipose tissue in obesity – proliferation or adipose hypertrophy.

TOPIC POSITION IN MEDICAL PUBLIC

There are reports that say that the adipose in type 2 diabetes persons and with positive calory balance, compared to the obese persons without the diabetes, have lower chance for fat storage with cellular proliferation because of the decreased genes expression responsible for the adipogenesis [1,2]. However, clinical significance in the obesity patogenesis does not reflect only in the fact how, but also where does the body adipose accumulate and store [1,3,4]. According to the place – region where the adipose accumulates, the adipose tissue is divided to the visceral and subcutenaus adipose tissue. The visceral adipose tissue is adipose more
metabolically active compared to the subco-
tenaus adipose tissue. Bigger metabolic activ-
ity of the visceral adipose tissue, compared to
the subcutaneous, is reflected in the schedule
and the amount of the receptors in the adi-
pocytes, disballance between the lipogenesis
and lipolysis, difference in the secretion of the
adipokines, cytokines and other mediators of
inflammation, as well as the difference in the
hormone and protein release [3].

The appearance of the visceral adi-
pose tissue in the omentum, mesentery, liver,
muscles, pericardially and other organs is
marked as ectopic and often combines with
the high insulin concentration in blood and in-
sulin resistance that is measured by hyperin-
sulinemic euglycemic clamp or other techincs
that measure fast responses of the aimed or-
gans, primarily muscels, to the insulin action
[5,6]. It is also shown that the accumulation of
the visceral adipose tissue in abdomen is
combined with the accelerated atherosclerosis
development [7].

The connection of the insulin resist-
ence and excess accumulation of the visceral
adipose tissue still has not been clarified. There
are few theories about the connection between
the insulin resistance and overaccumulation
of the visceral adipose tissue, one of which is
"portal" or "lipolitic" theory. This theory im-
plies that the intra-abdominal visceral adipose
adipose tissue has anatomic and metabolic charact-
eristics that are unique compared to the adipose
tissue of other localization, and, which is very
interesting, it is especially regarded to the re-
gions that are drained via the portal circula-
tion (omental and mesenteric adipose tissue) [8].

According to this theory, the connec-
tion between the insulin resistance and viscer-
al adipose tissue is in the fact that the visceral
adipose tissue has a bigger activation of the β3
adrenergic receptor with polymorphism of the
gene allele responsible for the expression of β3
receptors [9]. Bigger β3 receptors activity leads
to the increasement of the lipolitic activity, cir-
culating non-esterified adipose acids increase,
dislipoproteinemia (increased levels of trig-
lycerides with reduced levels of high-density
cholesterol) and insulin resistance with a con-
sequent reduction in glucose tolerance.

Alternative to the "portal theory" is
"hormone-inflammatory theory" in whose
base is that the visceral adipose tissue is rich in
macrophages that increasingly produce pro-
inflammatory cytokines, such as tumor nec-
crosis factor alpha (TNF-α) and interleukin-6,
while leading to the decreased protective adi-
pokines secretion, among which adiponectin
should be noted [10].

Also, it was demonstrated in animal
models that visceral fat affects hormone pro-
duction higher resistin, which got its name
based on being established that it causes resis-
tance to insulin [11]. For mentioned abdominal
visceral fat it has been presented, both in hu-
mans and in animal models, that these tissues
compared to the subcutaneous adipose tissue
produce significantly more interleukin-6, [12]
while the excessive secretion of TNF-α could
be produced only in animals, but not in the
human population [13]. It has been shown
that interleukin-6 possess great induction po-
tential of C-reactive protein (CRP) in the liver,
so the interleukin-6 and CRP have become im-
portant predictors of visceral obesity, insulin
resistance syndrome and type 2 diabetes [14].
Studies that have pointed to the importance
of the links between genetic factors, excessive
food intake, reduced physical activity, insulin
resistance, visceral obesity, inflammation and
endothelial dysfunction of blood vessels in
the development of atherosclerosis in patients
with type 2 diabetes are especially important
[15].

Also in animal models has been
shown that by specific inhibitors of tyrosine
kinases (substances among which there are
also some drugs that are mainly used in cer-
tain leucosis treatment, but are also being test-
ed the treatment of type 2 diabetes resistant
to other forms of treatment) reduces insulin
resistance and insulinemia [16]. It was found
that their use increases the takeover and use
of glucose, associated with the reduction of
proinflammatory cytokines and proliferation
of macrophages in the mesenteric adipose tis-
tue. All of this was accompanied by a reduc-
tion of the insulin receptor substrate 1, which
has been proven, next to the tyrosine kinase
of the insulin, that can be phosphorylated and
serine / threonine kinases, activated by media-
tors of chronic inflammation or stress.

Certain newly discovered substances
with hormonal action, such as visfatin, which
is largely secreted in visceral adipose tissue, has
been shown to act like insulin via a tyrosine ki-
nase, and that visfatin and insulin have equal
insulin effect [17]. It has also been suggested
that there is no competition between visfatin
and insulin, so it was concluded that they bind to different subunits of the insulin receptor.

Great advance in the research of the pathogenetic link between insulin resistance, central type obesity, intra-abdominal obesity, chronic inflammation, atherosclerosis, dyslipoproteinemia and type 2 diabetes, has an increasing clinical importance, for at least two reasons. The first reason certainly is awareness of the role of intra-abdominal visceral adipose tissue in insulin resistance and type 2 diabetes, which led to the improvement and development of new anthropometric measurement methods and visceral obesity diagnosis in the general human population of different age, gender, ethnicity and race [18,19]. While some authors emphasize the importance of the morphological measurement of visceral adipose in patients with type 2 diabetes with nuclear magnetic resonance imaging, computed tomography or ultrasound, [19] others emphasize the ease of measurement of waist circumference as a measure of abdominal obesity, but also the most important predictor of vascular events in these patients [20]. The latter authors showed that in patients with type 2 diabetes and waist circumference > 90 cm (for men) or > 85 cm (for women), as well as with the level of serum triglycerides ≥ 2 mmol/L (hypertriglyceridemic waist), multiply increases the risk of a cardiovascular disease.

Second, but not less important reason to clarify the role of increased visceral obesity in type 2 diabetes is that these findings started to apply critically in monitoring the effects of pharmacotherapy drugs in type 2 diabetes and its prevention, but also in control of its non-pharmacological treatment, which primarily involves the implementation of strict dietary measures with the programmed physical activity increase [21-23].

In newly diagnosed type 2 diabetes patients first step in the treatment is a change of lifestyle that is reflected in the reduction of patient body weight (if overweight) and increasing physical activity. However, such therapeutic measure, even if it leads to a reduction in glycated hemoglobin (HbA1c) by 1-2%, it becomes insufficient to maintain the achieved glucometabolical effect already in the first year of non-pharmacological intervention [24].

The next step in the type 2 diabetes treatment is conducting therapy with metformin, which is only contraindicated in patients with renal insufficiency (creatinine concentrations > 132 mmol/L for men and > 124 mmol/ L for women) [25]. The expected reduction in the level of HbA1c in patients with type 2 diabetes on metformin monotherapy is 1% -2% [26,27]. Metformin is an oral anti-diabetic agent from the group of biguanides. The bioavailability of metformin is 50% -60%. It is absorbed mainly from the small intestine, and estimated time of resorption him 0.9 hours to 2.6 hours. After 1-2 hours from the oral dose taken from 500 mg -1000 mg, maximum drug concentrations in plasma are 1-2μg/mL. About 90% of metformin is eliminated in the urine within 12 hours. Is evenly distributed in all tissues, in concentrations close to those in the peripheral plasma, while it achieves high concentrations in the liver and kidneys. Metformin achieves the highest concentrations in the salivary glands and in the intestine wall.

The metformin treatment increases insulin sensitivity, which is reflected by reducing fast glucose and insulin circulating concentrations. Metformin has no effect in the absence of insulin [28]. In patients with type 2 diabetes, the effect in reducing the glycemia by metformin is mainly explained by the mechanism of reducing hepatic production and increasing peripheral glucose uptake. Several other mechanisms of metformin action also contribute to the reduction of blood glucose, such as increasing intestinal glucose utilization and reducing adipose acid oxidation. Metformin decreases glucose production in the liver in patients with type 2 diabetes, in which it must be borne in mind that this is a very important mechanism of action on reducing fast glucose [29].

In isolated liver cells metformin increases suppressing gluconeogenesis by insulin and lowers glucagon-stimulated gluconeogenesis [30]. In most studies, metformin also increases the availability of glucose which was confirmed by hyperinsulinemic, euinsulinemic clamp or hyperglycemic clamp procedures in patients with type 2 diabetes, where the muscles were central site of metformin action [27]. In animals, metformin increases muscle glucose takeover stimulated by insulin, resulting in a glycogen synthesis increase and the glucose oxidation in peripheral tissues, but not in increasing the production of lactate [31].

Metformin also increases the takeover and oxidation of glucose in adipose tissue, and equally well encourages lipogenesis [32]. However, the metformin in vitro effect in
the peripheral tissues depends on the amount of its concentration, so it's very slow at the beginning. Metformin increases insulin binding to its receptors by increasing the phosphorylation and the tyrosine kinase activity on the insulin receptors in vivo, so this could lead to a reduction in plasma glucose, which could not be reproduced in vitro [33]. It also increases the possibility of translocation of the GLUT-1 and GLUT-2 glucose transporter isoforms in various types of cells [34] and thus prevents the occurrence of the insulin resistance in hepatocytes and adipocytes cultures, which are exposed to high concentrations of insulin for a longer period of time [35].

In the case of long-term use, metformin reduces the concentration of plasma lipoproteins (particularly triglycerides, and, to a lesser degree, cholesterol) in patients with hyperlipoproteinemia, especially Type IV, and II-B [36]. It is considered to be the drug of choice in obese patients with type 2 diabetes, primarily because it does not increase the body weight of patients, but on the contrary, it can reduce adipose tissue [29].

A significant contribution to the elucidation of the mechanism of the metformin action was given by Zhou et al 2001 [37]. They showed that metformin activates the hepatic and muscle adenosine monophosphate-activated protein kinase (AMPK), an enzyme that normally resides adenosine monophosphate-activated, being result of the adenosine triphosphate decomposition. AMPK also gets triggered by the cell signaling for increased energy requirements. Hepatic AMPK activation results in phosphorylation and inhibition of acetyl coenzyme A carboxylase, which catalyzes lipogenesis. Since furthermore there is a blockage in the synthesis of adipose acids, their oxidation is being stimulated. In addition, the activation of hepatic AMPK reduces the expression of a sterol-regulatory element-binding-protein-1 (SREBP-1), normally an important transcription factor that participates in the pathogenesis of insulin resistance, dyslipidemia, and type 2 diabetes. Reduction of SREBP-1 expression leads to a decrease of gene expression of the lipogenic enzymes that later contribute to the reduction of synthesis of triglycerides and hepatic steatosis occurrence.

However, it must be noted that although there is a common view that metformin reduces obesity, with special emphasis on visceral obesity in patients with type 2 diabetes, there is a lack of studies that could confirm this and/or possibly show the correlation of the reduction of abdominal visceral obesity with a parallel increase in insulin sensitivity, glikoregulation recovery or dislipoproteinemia correction in type 2 diabetes patients.

In our earlier work, we showed that in obese type 2 diabetes patients, metformin reduces unproductive fast insulin secretion and increases its productive postprandial secretion [38]. It also increases the suppression of gluconeogenesis by insulin and lowers glucagon-stimulated gluconeogenesis [30]. Metformin increases takeover and oxidation of glucose inadipose tissue [32]. Under the action of metformin in omental adipocytes, the expression of SREBP-1 inhibits with an increase in AMPK [39].

All these mechanisms of metformin action, showed that it has a great potential in reducing visceral obesity that combines with insulin resistance. The metformin impact on AMPK increase and SREBP-1 inhibition in visceral adipose tissue, is particularly highlighted in the review reports as a potentially important mechanism in the prevention and reduction of cardiovascular risk in patients with type 2 diabetes and insulin resistance [40].

On the other hand, there are few and contradictory reports about the impact of other oral antidiabetics on the visceral obesity in patients with type 2 diabetes. There are only individual detailed reports that certain drugs called insulin sensitizers, such as thiazolidinediones, after the first three months of application in patients with type 2 diabetes, although leading to a reduction in HbA1c levels, lead to an increase in overall obesity, increase of subcutaneous adipose tissue, with no changes in visceral obesity [23]. Our previous results indicate that the three-month application of metformin in obese patients with type 2 diabetes, and patients with impaired glucose tolerance more often led to normalization of HbA1c levels in patients with pretherapy level of HbA1c < 8% compared to patients with HbA1c ≥ 8% [41,42].

FURTHER ACTION

In spite of the clear implications that metformin is the drug of choice in the treatment of obese patients with type 2 diabetes, there is a lack of the pharmacoepidemiological and clinical studies that document the effects
of metformin on the redistribution of body adipose as well as its impact on the reduction of abdominal and / or visceral obesity. Generally speaking, the effects of oral antidiabetic agents in different forms of obesity are imperative for further research, as the current good clinical practice reduced to monitoring of metabolic and anthropometric variables that define obesity, including abdominal obesity, without the actual insight into the visceral obesity.

ACKNOWLEDGMENT

I am thankful for linguistic corrections of this text to Ana D. Vuković, language and literature professor.

REFERENCES

23. Kim SK, Hur KY, Kim HJ, et al. The increase in abdominal subcutaneous fat depot is an independent factor to determine the glycemic control after rosiglitazone treatment. Eur J Endocrinol

Uloga metformina u tretmanu dijabetesa tipa 2 i gojaznosti

Mira H. Vuković
Centar za edukaciju, Opšta bolnica Valjevo, Valjevo, Srbija

KRATAK SADRŽAJ

Tema: Međusobna udruženost i proučavanje povezanosti između gojaznosti, visceralne gojaznosti, smanjene osetljivosti na insulin (sa posledičnom hiperinsulinemijom), dijabetesa tip 2, dislipoproteinemiija i antropometrijskih karakteristika pacijenata sa metaboličkim sindromom, predmet su mnogih epidemioloških studija. Međutim, proučava se da postoji neslaganje i kontradiktornost u definisanju antropometrijskih i metaboličkih faktora rizika za nastanak kardiovaskularnih, cerebrovaskularnih i drugih vaskularnih oboljenja, posebno u populaciji gojaznih pacijenata sa dijabetesom tip 2.

Pozicioniranost teme u medicinskoj javnosti: Teorijski, metformin postiže dobru glikoregulaciju upravo kod visceralno gojaznih bolesnika. Ovo se objašnjava većom glikometabičkom aktivnošću visceralnog masnog tkiva u odnosu na supkutanu mast.

Buduće aktivnosti: Efikasnija redukcija visceralnog masnog tkiva kod pacijenata sa postignutom boljom glikoregulacijom pod uticajem metformina, rezultat je njegovih kompleksnih mehanizama dejstva. Metformin igra važnu ulogu u smanjenju kardiovaskularnog rizika koji potiče od povišene visceralne gojaznosti, paralelno sa postizanjem dobre glikoregulacije kod gojaznih bolesnika sa dijabetesom tip 2.

Ključne reči: metformin, dijabetes, tip 2, gojaznost, masno tkivo

Received: July 01, 2016
Accepted: July 23, 2016